Mining of Spatial Co-location Pattern Implementation by Fp Growth
نویسنده
چکیده
Mining co-location patterns from spatial databases may disclose the types of spatial features which are likely located as neighbours in space. Accordingly, we presented an algorithm previously for mining spatially co-located moving objects using spatial data mining techniques and Prim's Algorithm. In the previous technique, the scanning of database to mine the spatial co-location patterns took much computational cost. In order to reduce the computation time, in this work, we make use of R-tree that is spatial data structure to mine the spatial co-location patterns. The important step presented in the approach is that the transformation of spatial data into the compact format that is well-suitable to mine the patterns. According to, we have adapted the R-tree structure that converts the spatial data with the feature into the transactional data format. Then, the prominent pattern mining algorithm, FP growth is used to mine the spatial co-location patterns from the converted format of data. Finally, the performance of the proposed technique is compared with the previous technique in terms of time and memory usage. From the results, we can ensure that the proposed technique outperformed of about more than 50 % of previous algorithm in time and memory usage.
منابع مشابه
Fp-tree Based Spatial Co-location Pattern Mining
A co-location pattern is a set of spatial features frequently located together in space. A frequent pattern is a set of items that frequently appears in a transaction database. Since its introduction, the paradigm of frequent pattern mining has undergone a shift from candidate generation-and-test based approaches to projection based approaches. Co-location patterns resemble frequent patterns in...
متن کاملAn Efficient Algorithm for Mining Spatially Co-located Moving Objects
Mining co-location patterns from spatial databases may disclose the types of spatial features which are likely located as neighbors’ in space. Accordingly, we present an algorithm previously for mining spatially co-located moving objects using spatial data mining techniques and Prim’s Algorithm. In the previous technique, the scanning of database to mine the spatial co-location patterns took mu...
متن کاملAn Ontology Assisted Framework Co-location Pattern Mining
The importance of spatial data mining is growing with the increasing incidence and importance of large geo-spatial datasets such as maps, location based mobile app data, medical data, crime data, education system data, traffic data and many more. Co-location pattern mining is one of the important task in spatial data mining. The co-location patterns represent subsets of Boolean spatial features...
متن کاملMining Co-location Patterns from Spatial Data Using Rulebased Approach
Co-location pattern is a group of spatial features/events that are frequently co-located in the same region. The co-location pattern discovery process finds the subsets of features frequently located together. Co-location rules are identified by spatial statistics or data mining techniques. A co-location algorithm has been used to discover the co-location patterns which possess an ant monotone ...
متن کاملMining Of Spatial Co-location Pattern from Spatial Datasets
Spatial data mining, or knowledge discovery in spatial database, refers to the extraction of implicit knowledge, spatial relations, or other patterns not explicitly stored in spatial databases. Spatial data mining is the process of discovering interesting characteristics and patterns that may implicitly exist in spatial database. A huge amount of spatial data and newly emerging concept of Spati...
متن کامل